
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Sampling-Based Motion Planning Using
Burs of Free-Space

Bc. Jiří Hartvich

Supervisor: Ing. Vojtěch Vonásek, Ph.D.
May 2024

ii

Acknowledgements
I would like to thank my supervisor Vo-
jtěch Vonásek for being a guiding force in
this work.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses. I also declare that ChatGPT was
used as a helping hand in summarizing
parts of this work.

Prague, May 23, 2024

Prohlašuji, že jsem předloženou
práci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských prací. Rovněž prohlašuji,
že bylo využito ChatGPT při shrnování
částí této práce.

V Praze dne 23. května 2024

. .
Jiří Hartvich

iii

Abstract
Motion planning is essential for enabling
autonomous systems to navigate com-
plex environments. This work focuses on
improving and generalizing the Rapidly-
exploring Bur Tree (RBT) algorithm for
mobile robotic manipulators. Traditional
methods like Rapidly-exploring Random
Trees (RRT) and Probabilistic Road Maps
(PRM) often struggle with planning in
complex environments. While RBT has
shown high exploratory capabilities, it
was previously limited to stationary line-
segment manipulators. We have adapted
RBT for mobile robotic manipulators
and statistically evaluated its performance
against other planners, such as IK-RRT
and J+RRT, in various grasping tasks.
Our findings indicate that IK-RRT still
outperforms other planners due to its ef-
ficient combination of inverse kinematics
and bi-directional RRT. Although RBT
demonstrated potential in scenarios with
large free spaces, it underperformed in
constrained environments due to the gen-
eralization of the algorithm and the com-
plexity of the environments considered.
This work provides insights into the con-
ditions under which RBT and other plan-
ners are most effective, while also propos-
ing potential improvements and solutions
to the shortcomings of RBT.

Keywords: motion planning, mobile
manipulators, grasping, robot kinematics

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.
Praha, Resslova 307/9 (vstup z Karlovo
náměstí 13), místnost: E-121

Abstrakt
Plánování cest je nezbytné pro navigaci
autonomních systémů ve složitých prostře-
dích. Tato práce se zaměřuje na vylepšení
a zobecnění algoritmu Rapidly-exploring
Bur Tree (RBT) pro mobilní robotické ma-
nipulátory. Tradiční metody jako Rapidly-
exploring Random Trees (RRT) a Proba-
bilistic Road Maps (PRM) mají s pláno-
váním ve složitých prostředích často po-
tíže. Ačkoli RBT prokázalo vysokou úro-
veň průzkumných schopností, bylo dříve
omezeno na stacionární robotické manipu-
látory v podobě řetězu úseček. Přizpůso-
bili jsme RBT pro mobilní robotické mani-
pulátory a statisticky vyhodnotili jeho vý-
konnost v různých uchopovacích úlohách
ve srovnání s jinými plánovači, jako jsou
IK-RRT či J+RRT. Naše zjištění ukazují,
že IK-RRT stále dosahuje lepších výsledků
než ostatní plánovače díky efektivní kom-
binaci inverzní kinematiky a obousměr-
ného RRT. Ačkoli RBT prokázalo poten-
ciál ve scénářích s velkými prostory bez
překážek, v omezených prostorech dosaho-
valo horších výkonů z důvodu zobecnění
algoritmu a složitosti uvažovaných pro-
středí. Tato práce přináší poznatky o pod-
mínkách, za kterých jsou RBT a další
plánovače nejefektivnější, a zároveň navr-
huje potenciální vylepšení RBT a řešení
jeho nedostatků.

Klíčová slova: plánování cest, mobilní
manipulátory, uchopování objektů,
kinematika robotů

Překlad názvu: Rychlé plánování
pohybu manipulátorů

iv

Contents
1 Introduction 1
2 Related work 3
2.1 Motion planning definition 3

2.1.1 RRT (Rapidly-exploring
Random Trees) 5

2.1.2 PRM (Probabilistic RoadMaps) 7
2.2 IK-RRT . 8
2.3 J+RRT . 8
2.4 Workspace RRT 8

2.4.1 RRT advantages and
disadvantages 10

2.5 Burs . 11
2.5.1 Assumptions 14
2.5.2 RBT for manipulators 15
2.5.3 RBT for rigid bodies 15
2.5.4 RBT extensions 18

2.6 BURG–Toolkit 20
2.6.1 Summary 20

3 Methods 23
3.1 Calculating Burs 24

3.1.1 Revolute joints 25
3.1.2 Prismatic joints 26
3.1.3 Revolute and Prismatic Bur . 27
3.1.4 Added bonus for workspace

goals . 27
3.1.5 Including geometry for mobile

robotic manipulators 28
3.2 Extended RBT 31
4 Results 35
4.1 RBT implementation 36
4.2 Hyperparameters 37
4.3 Bur endpoint calculation 38

4.3.1 Planning time 38
4.4 Testing on scenarios 40

4.4.1 Tree growth 41
4.4.2 Implementation 43

5 Conclusion 49
5.1 Future work 49
Bibliography 53

v

Figures
1.1 Large object motion planning

examples. 2

2.1 Franka Emika Panda robot. [1] . . 4
2.2 Franka Emika Panda robot arm

grasping a box in a kitchen. [2] 5
2.3 RRT example tree. 6
2.4 RRT extend procedure visualized

in configuration space. 7
2.5 PRM example roadmap. 8
2.6 Narrow passage visualized in

configuration space. 11
2.7 An RRT tree compared with a

single step in RBT. Both are grown
from an initial configuration. 11

2.8 Cylinders encompassing all links of
the robot. 12

2.9 A two segment robot and a bur in
the same configuration in 2D
configuration space. 13

2.10 Collision-free area of a line
segment and of a capsule. 15

2.11 Rigid body rotational collision. 17
2.12 Rigid body radius in 2D. 18
2.13 Cylinders encompassing a rigid

body along xyz-axes. 18
2.14 Rigid body maximum movement. 19
2.15 Planar approximation of an

obstacle. 20
2.16 A scene with a screwdriver as

grasp target and a shelf on a table as
obstacles. 21

3.1 Polygon rigid body represented by
a tree graph. 24

3.2 Cylinders encompassing all
subsequent links of the robot. 25

3.3 Encompassing radii from the first
joint to all subsequent links. 26

3.4 Cylinders encompassing all
subsequent links of the robot. 27

3.5 Geometry of a chain-link robot and
the points whose movement
estimations are calculated. 29

3.6 Bur distances used for calculation.
Red: areas in which link endpoints
can move — equivalent of the
complete bubble CB but in
workspace. 31

3.7 General collision-free area. 32
3.8 Configurations where expansion of

subsequent links beyond the
boundary of a bur is possible. 32

3.9 Extended bur — it is split in the
middle and “stretched”. 34

4.1 Start and goal configurations of
scenario 2 with a solution trajectory
visualization. 36

4.2 Four tested scenarios. 36
4.3 Original and simplified robot

meshes. 39
4.4 Times to calculate endpoints based

on the method of calculation. 40
4.5 Comparison of J+RBT planners

with original extended vs full bur. . 41
4.6 Trajectory of J+RBT in scenario
13. 41

4.7 Planning times for planners
J+RRT, Algorithm 4, IK-RRT,
Algorithm 3 and J+RBT,
Algorithm 10, for scenarios 1 and 2. 42

4.8 Planning times for planners
J+RRT, Algorithm 4, IK-RRT,
Algorithm 3 and J+RBT,
Algorithm 10, for scenarios 3 and 4. 42

4.9 Scenario for an 8–DOF 2D
manipulator by Lacevic et al. [3].
Start and goal configurations left and
right. 44

4.10 Comparison of the growth of RBT
and RRT trees in the same amount of
time. 46

5.1 Comparison of bur trees. 51

vi

Tables
3.1 Classification of the applicability of

each bur algorithm. 24
3.2 Classification of the applicability of

each bur algorithm. 28
3.3 Classification of the applicability of

each bur algorithm. 31

4.1 Table of hyperparameters. 38
4.2 Endpoint calculation types 38
4.3 Comparison of node generation

rates between the original and our
versions of RRT and RBT algorithms.
Rates vary depending on the CPU
used. 43

4.4 J+RRT profiling result 46
4.5 J+RBT profiling result 46

vii

Chapter 1
Introduction

Motion planning is fundamental to enabling machines and autonomous sys-
tems to navigate and perform tasks in complex environments. It involves
finding ways to move an object or a robot from one point to another while
avoiding obstacles and respecting various constraints such as speed limits,
the geometry of the space and the dynamics of the moving object. This
problem is often visualized through the Piano Mover’s Problem, Figure 1.1a.
It encapsulates the challenge of navigating through tight spaces without
causing damage to the object or the environment.

Motion planning also plays a crucial role in robotics and automation, en-
abling mobile robots, drones and manipulators to perform a wide range of
tasks. These tasks include assembling components, exploring underwater
environments and interacting in social settings. In computer-aided design
(CAD) systems and computer games, motion planning is essential for disas-
sembly and assembly planning, maintainability studies and realistic character
movements, enhancing both user experience and design efficiency.

In the physical world, motion planning algorithms have practical applica-
tions such as autonomous car-parking and large object transportation, an
example of which is depicted in Figure 1.1b. A particularly active research
area is planning for humanoid robots and robotic manipulators. Traditional
planning methods often struggle with high-degree-of-freedom robots in clut-
tered environments, making motion planning an ongoing research challenge.

Methods like Rapidly-exploring Random Trees (RRT) and Probabilistic
Road Maps (PRM) have been proposed to address motion planning tasks.
While these methods perform well in high-dimensional spaces, they often
fall short in terms of planning time for complex environments. To overcome
these limitations, other methods such as planning for redundant manipulators
and distance-information-based planners have been proposed. One such
planner is Rapidly-exploring Bur Trees (RBT), which shows promise as a
fast planner. RBT works well with high-degree-of-freedom manipulators and
demonstrates better exploratory properties than RRT. However, it is currently
only applicable to stationary line-segment manipulators. In this work, we
aim to implement and generalize RBT for mobile robotic manipulators.

Motion planning algorithms typically plan a path between two joint config-
urations of a robot: a start and a goal configuration, each defined by a list

1

1. Introduction

(a) : Piano mover. [4]
(b) : Friends moving a couch through
a stairway. [5]

Figure 1.1: Large object motion planning examples.

of angles uniquely determining the robot’s pose. We will address the task of
planning from a starting robot configuration towards grasping objects in the
environment. This task is particularly common in human environments where
the exact joint configuration required to grasp an object is often unknown.
Instead, the focus is on positioning the hand or gripper correctly to grasp the
object. This task is more challenging than regular motion planning because
the final joint angles and the reachable grasp from the starting configuration
are not known in advance. We will have a set of grasping poses and a starting
configuration from which we will aim to reach the goal in the shortest time
possible.

2

Chapter 2
Related work

In this chapter, we delve into the realm of motion planning, a process that
computes a sequence of permissible movements to transition from an initial
state to a desired goal state. This concept is pivotal in the fields of robotics
and automation. We will begin by laying out a clear definition of motion
planning. Following that, we will examine two distinct paradigms within
the discipline, taking a closer look at one to understand its implementation,
advantages and disadvantages.

2.1 Motion planning definition

Motion planning is a computational problem to find a sequence of valid steps
from a starting configuration to a goal configuration. Motion planning can
either be performed in configuration space where the robot is represented as
a point or in workspace where the geometry of the robot has to be taken into
account. It is simpler to perform planning in configuration space because the
robot is represented as a point in that is either in a collision-free configuration
or in a colliding configuration. Collisions are determined in the workspace.

The workspace, denoted W, is the the space where the robot operates. W
is usually W ⊆ R2 or W ⊆ R3. A configuration q specifies every point of the
robot such that R(q) ⊆ W. q is usually a vector q = (q1, q2, . . . , qn) with n
degrees of freedom, where n is the dimensionality of the configuration space.
Configuration space C is the set of all possible configurations q. Obstacles
O are also a subset of the workspace O ⊆ W. A collision occurs when
O ∩R(q) ̸= ∅.

Motion planning in robotics is the problem of finding a collision-free path
τ(s) from a starting configuration qinit ∈ Cfree to a goal configuration qgoal ∈
Cfree, or goal region Cgoal ⊆ Cfree, such that τ(s) ∈ Cfree ∀s ∈ [0, 1], where
τ(0) = qinit, τ(1) ∈ Cgoal.

Motion planning can also be formulated in terms of planning from a starting
configuration qinit towards a goal region in the workspace Wgoal. The task is
to find a collision-free path τ(s) ∈ Cfree from qinit ∈ Cfree to Wgoal ⊆ Wfree

such that τ(s) ∈ Cfree ∀s ∈ [0, 1], where τ(0) = qinit, fC→W(τ(1)) ∈ Wgoal.
The mapping from configuration space to workspace fC→W is the robot’s

3

2. Related work.....................................

Figure 2.1: Franka Emika Panda robot. [1]

forward kinematics such that

fC→W(q) =
[
R1 t1

]
, (2.1)

where R is the rotation of the end-effector and t is the translation of the
end-effector in workspace W and q is the corresponding configuration. The
end-effector is usually the gripper or last link of a robot manipulator. Motion
planning for robotic manipulators is a common problem. Robotic manipula-
tors typically involve six or more degrees of freedom; an example manipulator
is depicted in Figure 2.1. It has been proven that motion planning is a P-
Space complete problem which means that complexity significantly increases
with the number of degrees of freedom [6], especially in environments with
obstacles. Computing a feasible, let alone optimal solution, is computationally
intensive.

Our task is to investigate motion planning in the context of workspace
goals, similar to [7]. A type of workspace goal is for example a grasp — a 6D
pose that consists of a rotation and translation. It is more comprehensively
represented as a rotation matrix and translation vector pair g = [R, t] ∈ G.
The grasp g maps to a configuration qg ∈ C in configuration space around
which we can define a goal area. The goal area QG is the set of configurations
that correspond to the set of goal grasps G:

QG = {q | fC−→W(q) ∈ G, q ∈ C} , (2.2)

where fC−→W(q) is the aforementioned forward kinematics function from
Equation 2.1. We assume that we are provided with the set of valid grasping
poses g ∈ G, and our goal will be to construct a path to reach one of these

4

...............................2.1. Motion planning definition

Figure 2.2: Franka Emika Panda robot arm grasping a box in a kitchen. [2]

poses with the end-effector of the manipulator. Grasping can be performed
independently of planning and solutions are readily available in libraries such
as the BURG toolkit [8], which builds on PyBullet [9] and has integrated
visualization, physics simulation and grasp creation. The focus of this work is
motion planning towards a set of grasps using a mobile robotic manipulator;
the goal is for the end-effector to get very close to the target object without
colliding with the environment. The manipulator we will be simulating is
depicted in Figure 2.2 grasping a YCB sugar box [10].

Naive methods for motion planning with a set of grasps g ∈ G as goals gen-
erally yield poor results [7]. In the following sections we will introduce existing
paradigms for motion planning and evaluate their advantages, disadvantages
and extensions for planning towards workspace goals.

2.1.1 RRT (Rapidly-exploring Random Trees)

The first approach to motion planning we introduce is Rapidly-exploring
Random Trees (RRT) [11]. RRT explores configuration space efficiently by
incrementally constructing a tree graph. Planning starts from the initial
configuration qinit ∈ Cfree with the tree T initially containing only qinit. RRT
repeats the following steps: choose a random configuration qrand ∈ C; find the
configuration qnear ∈ T closest to qrand; create a new configuration qnew that
extends from qnear to qrand by distance ε in configuration space; check if the
path from qnear to qnew is collision-free; if it is collision-free, add the point
qnew to the tree T ; repeat until the target configuration qgoal ∈ Cfree is reached
withing a certain threshold; when it does find a path within the maximum
amount of iterations, then it constructs a path by iterating from the goal
node qgoal towards the root node qinit by taking the parent of each node and
adding it to the path. The whole algorithm is described in Algorithm 1 and

5

2. Related work.....................................

Free space

Obstacles

Figure 2.3: RRT example tree.

the Extend method that grows the tree to a new configuration is described
in Algorithm 2. RRT has the added advantage that it is inherently biased
towards exploring unexplored regions of configuration space [11]. Figure 2.3
illustrates an example RRT tree and Figure 2.4 shows how expansion works.

Algorithm 1 RRT(qinit, qgoal)[12]

1: Ta.Init(qinit)
2: Tb.Init(qgoal)
3: for k = 1 to K do
4: qrand ← RandomConfig()
5: if Extend(T , qrand, qgoal, qnew) = Reached then
6: return Path(T , qgoal)
7: end if
8: end for
9: return Failure

The RRT Extend procedure, Algorithm 2, is the most commonly called
routine in RRT, so it is often modified or called differently in various planners:. RRTConnect uses two trees instead of one, each extending from qinit

and qgoal respectively. With a small probability pconnect it attempts to
connect the two trees by repeatedly calling the Extend procedure until it
collides, reaches joint limits or until some number of steps is reached [12].. RRT* grows like regular RRT but during runtime it modifies the tree to
create the shortest path [13]..Other methods modify how the tree grows based on the environment.
RRT-CT for example uses flooding — it extends orthogonally or diago-
nally in configuration space until it collides to cover an area as wide as
possible [14].. RBT (Rapid Bur Trees) replaces the RRT Extend procedure with a
distance-based as opposed to collision-based extension function. For

6

...............................2.1. Motion planning definition

Algorithm 2 EXTEND(T , q, qgoal, qnew)[12], Figure 2.4.

1: qnear ← NearestNeighbour(q, T)
2: if NewConfig(q, qnear, qnew) then
3: T .Add(qnear, qnew)
4: if qnew = qgoal then
5: return Reached
6: else
7: return Advanced
8: end if
9: else

10: return Trapped
11: end if

Free space

Figure 2.4: RRT extend procedure visualized in configuration space.

each distance query it is able to create several extensions of the tree at
once [3].

2.1.2 PRM (Probabilistic RoadMaps)

Another popular approach to motion planning is Probabilistic RoadMaps
(PRM), which proceeds in two phases. The first, learning phase consists of
sampling in configuration space C. Collision free configurations — nodes —
are kept and then connected using edges that correspond to feasible paths
between configurations. This graph is called the roadmap. In the second,
query phase, any given start and goal configurations of the robot are connected
to two nodes on the roadmap; the roadmap is then searched for a path joining
these two nodes [15]. Figure 2.5 illustrates a probabilistic roadmap.

We will, however, focus solely on the RRT paradigm as it is the more
popular of the two and exhibits better exploratory properties. The methods
in the following sections are extensions of RRT that plan from a starting
configuration qinit towards a set of grasps g ∈ G.

7

2. Related work.....................................

Free space

Obstacles

Figure 2.5: PRM example roadmap.

2.2 IK-RRT

IK-RRT [16] is a method that alternates between finding a within-joint-limits,
collision-free inverse kinematics solution and bi-directional RRT. The authors
propose a modified inverse kinematics method based on the reachability space
of a humanoid robot. Unfortunately they do not provide an easy way to
apply this to other robots. Moreover, the authors tested the planner with
at most one obstacle. IK-RRT starts by trying to find a within-joint-limits,
collision-free inverse kinematics solution, and only after it finds an initial
solution does it start the planning process, similar to RRTConnect [12]. The
first inverse kinematics solution qgoal might not be reachable from the initial
configuration qinit, so the planner alternates between planning and finding
additional inverse kinematics solutions. The whole process is described in
Algorithm 3.

2.3 J+RRT

J+RRT [16] is an extension of the basic RRT. It starts off like regular RRT,
but with some probability psteer it extends towards the workspace goal using
ExtendToGoal. Inside ExtendToGoal, at every step, it uses the pseudo-inverse
of the Jacobian to direct the end-effector towards a target workspace pose
as opposed to a random configuration. The body of J+RRT is described in
Algorithm 4 and ExtendToGoal is described in Algorithm 5.

2.4 Workspace RRT

Shkolnik et al. [17] explore how RRT can work in high-dimensional configura-
tion spaces for highly redundant manipulators. Regular RRT in configuration
space becomes less efficient the more redundant a manipulator becomes. In
cases where the configuration space has possibly hundreds or thousands of
dimensions, a step in configuration space possibly translates to an exceedingly

8

................................... 2.4. Workspace RRT

Algorithm 3 IK-RRT(qinit, pobj, G), qinit = start configuration, pobj =
object pose, G = set of grasp poses [16]

1: T1.AddConfiguration(qinit)
2: T2.Clear()
3: while not TimeOut() do
4: if #IKSolutions = 0 or Rand() < pIK then
5: ptarget ← GetRandomGrasp(G)
6: qIK ← ComputeIK(ptarget)
7: if not Collision(qIK) then
8: T2.AddConfiguration(qIK)
9: end if

10: else
11: qrand ← RandomConfig()
12: if T1.Connect(qrand) and T2.Connect(qrand) then
13: Solution← BuildSolutionPath(qrand)
14: return Path(Solution)
15: end if
16: end if
17: end while
18: return Failure

Algorithm 4 J+RRT(qinit, pobj, G), qinit = start configuration, pobj = object
pose, G = set of grasp poses [16]

1: T .AddConfiguration(qinit)
2: while not TimeOut() do
3: qrand ← RandomConfig()
4: qnear ← Nearest(qrand)
5: Extend(T , qrand, ∅, qnew)
6: if Rand() < psteer then
7: Solution ← ExtendToGoal(T , pobj, G)
8: if Solution ̸= NULL then
9: return PrunePath(Solution)

10: end if
11: end if
12: end while
13: return Failure

9

2. Related work.....................................
Algorithm 5 ExtendToGoal(T) [16]

1: ptarget ← GetRandomGrasp(G)
2: qnear ← GetNearestNeighbor(T , ptarget)
3: do
4: pnear ← ForwardKinematics(qnear)
5: ∆p ← ptarget − pnear
6: ∆q ← J+(qnear) ·∆p
7: qnew ← qnear + ε ·Normalize(∆q)
8: if Collision(qnear, qnew) or not InJointLimits(qnew) then
9: return NULL

10: end if
11: T .Add(qnear, qnew)
12: qnear ← qnew
13: while Length(∆p) > ThresholdCartesian
14: return BuildSolutionPath(qnear)

small change in workspace:

fC→W (q + ε ·∆q) −−−→
n→∞

fC→W(q), q, qr ∈ Rn, ε ∈ R, (2.3)

where fC→W is the forward kinematics mapping, the configuration space
is C = Rn and ∆q is a random direction, ∥∆q∥ = 1. Moreover, the more
redundant the manipulator, the more likely it is that joint motions cancel each
other out. To tackle this, Shkolnik et al. propose a workspace-based RRT
that keeps track of its nodes in workspace and for each pose in workspace
it keeps a corresponding node in configuration space. The tree is grown like
regular RRT, but instead of growing towards a random configuration qr, it
is grown from pnear = fC→W(qnear) in a random direction ∆p. It is directed
from qnear toward fC→W(qnear)+∆p using the pseudo-inverse of the Jacobian
at point qnear. In addition, to avoid clumping, which increases the likelihood
of redundant movement, null-space control is used to keep the manipulator
relatively straightened out or close to a desired shape:

q̇← J+ · ε ·Normalize(∆p) + α(I− J+J) · q̇ref, (2.4)

where, ε is the desired step size in the workspace, J is the Jacobian, J+ is its
pseudo-inverse, q̇ref is the reference direction which is to be approached as a
secondary goal, α is the weight parameter for the secondary goal and q̇ is
the resulting configuration-space update.

2.4.1 RRT advantages and disadvantages

RRT in general is a good algorithm for planning. It quickly expands into
unexplored configuration space, it is biased towards unexplored areas, and at
every step it is connected by a path to the root node. However, exploration
can be slow for environments with many obstacles or in constrained spaces. A
configuration space with a narrow passage caused by obstacles is depicted in

10

.. 2.5. Burs

Path

Figure 2.6: Narrow passage visualized in configuration space.

RRT
RBT

Figure 2.7: An RRT tree compared with a single step in RBT. Both are grown
from an initial configuration.

Figure 2.6. To solve the issue of quick exploration, Lacevic et al. [3] propose
RBT (Rapid Bur Trees), which replaces collision checking with distance
queries between the environment and the robot. To gain an edge over regular
RRT, the authors use the distance information to build a new object called a
bur of free space which is based on complete bubbles of collision-free space
that cover a significantly larger area than single RRT extension. An example
of what the “bur” Lacevic et al. propose looks like next to several RRT
extensions is depicted in Figure 2.7. The collision-free area defined by a
distance query is usually significantly larger than one or even several RRT
extensions.

2.5 Burs

A bur of free space builds on the concept of bubbles of free space from [18]. A
bubble of free space at configuration q is a volume of configuration space that

11

2. Related work.....................................

(a) : Radius of the base
joint.

(b) : Radius of the sec-
ond joint.

(c) : Radius of the
third joint.

Figure 2.8: Cylinders encompassing all links of the robot.

is guaranteed to be collision-free given the distance to the nearest obstacle
dc. The distance to the closest obstacle is defined as the smallest distance
between every segment of the robot and every obstacle in the environment:

dc = min
i=1...n

(
min

j=1...m
dij

)
, (2.5)

where i is a segment on the robot and j is an obstacle, n is the number of
segments on the robot and m is the number of obstacles. Using the distance to
the closest obstacle and the forward kinematics of the robot, we can construct
a bubble of free space:

B(q, dc) =
{

y
∣∣∣∣∣

n∑
i=1

ri |yi − qi| < dc, y ∈ Cfree

}
, (2.6)

where q is the starting configuration, y is the configuration that is collision-
free inside the bubble, ri is the radius of the cylinder that it collocated with
joint i encompassing all subsequent links of the robot, dc is the closest distance
from the robot to any obstacle. Encompassing radii ri for several joints on
an example robotic manipulator are illustrated in Figure 2.8.

Extending the tree graph using bubbles of free space turns out not to
provide any significant benefits to planning time [19]. That is why Lacevic et
al. [3] propose a more general notion of distance between two configurations
to create larger, complete bubbles. They define the distance between two
configurations to be the largest displacement of any point on the robot:

ρR(q1, q2) = max
p∈R
∥fp(q1)− fp(q2)∥ , (2.7)

where fp(q) denotes the forward kinematics mapping of configuration q to
point p on robot R. In other words, the metric function ρR calculates the
largest displacement that any point on the robot can achieve when moved
from configuration q1 to configuration q2.

The complete bubble CB, which uses this generalized notion of distance
ρR, Equation 2.7, is then defined as:

CB(q, dc) = {x ∈ Cfree | ρR(q, y) < dc, ∀y ∈ qx} , (2.8)

12

.. 2.5. Burs

Figure 2.9: A two segment robot and a bur in the same configuration in 2D
configuration space.

where dc is the closest distance from the robot to any obstacle, q is the
starting configuration, Cfree is collision-free configuration space and y is any
configuration inside the bubble.

Lacevic et al. 2016 [3] prove that the complete bubble is star-convex,
meaning that its boundary can be reached by a straight line from its center
point in configuration space. A bur is a subset of the complete bubble..Definition (Bur): A bur is a star-convex subset of the complete bubble:

Bur ⊂ CB ⊆ C consisting of the center-point qcenter and a set of endpoints
Qe. In other words, a Bur in configuration qcenter is the center-point
mapped to its child nodes Bur(qcenter) = {qcenter, {qe1 , . . . , qen

}}..Definition (Spine): A spine is a line segment that connects the center
of the bur and its endpoint.

An example bur of a two-line-segment model robot with its border highlighted
in configuration space is depicted in Figure 2.9.

Lacevic et al. [3] propose a method by which to compute a bur of free space.
Since a bur consists of disjunct spines — except the center point, which
they all share — it means that each spine can be computed independently of
others. A spine is calculated iteratively by calculating the edge-point qk+1 of
the collision-free bubble B(qk) from Equation 2.6 like so:

tk+1(tk, qe, qk) = tk + φ(tk)∑n
i=1 ri(qk)|qi

e − qi
k|

(1− tk), (2.9)

where tk ∈ [0, 1] is the progress parameter value after step k, qe is the
endpoint, qk is the configuration in step k: qk = q + tk(qe − q) and r is
the vector of radii of cylinders collocated with each joint encompassing all
subsequent links of the robot, Figure 2.8. The parameter tk starts at tk = 0
which corresponds to qnear; the endpoint of the bur qendpoint ends up in some
arbitrary value tendpoint ∈ (0, 1].

13

2. Related work.....................................
φ(t) is the function

φ(t) = dc − ρR (q, q + t · (qe − q)) , (2.10)

where qe is the target configuration, q is the starting configuration from
which the distance dc to the closest obstacle was calculated.

A reasonable number of steps k or a distance criterion can be chosen to
stop iteration. In [3], five steps are given as the threshold after which to stop
iterating. From Equation 2.9 we still need a way to obtain the radius ri of the

Algorithm 6 Bur(qnear, Qe, dc), Qe = target endpoints, dc = distance to
closest obstacle, Figure 2.9

Endpoints← {}
for i=1 to Length(Qe) do

for k=1 to 5 do
tk ← tk+1 (tk, Qe(i), qk) ▷ Function from Equation 2.9
qk ← qnear + tk · (Qe(i)− qnear) ▷ Radii rk are calculated in qk

end for
Endpoints.Add(qk)

end for
return {qnear, Endpoints}

cylinder collocated with the joint i encompassing all further links of the robot.
Radii of the cylinders encompassing all links of an example manipulator are
depicted in Figure 2.8. Lacevic et al. [3] calculate the radius rj for each joint
j by projecting the locations pi of all segments i on the plane of the joint j
and then taking the maximum norm of those vectors:

rj = max
i=m...n

projv⊥
j

(pi − pj), (2.11)

where vj is the axis of joint j, pi is the location of segment i, pj is the
location of joint j, m is the next segment connected to joint j and n is the
number of segments.

2.5.1 Assumptions

Lacevic et al. [3] computed burs for a robotic manipulator with two assump-
tions in mind:..1. the robot is represented by a chain of line segments, as can be seen for

an example two-segment line-robot in the workspace part of Figure 2.9;..2. the robot is a manipulator with only revolute joints.

In reality these assumptions are a special case of capsule robots. Lacevic
et al. [3] tested the algorithm on “real” robots, i.e., relatively compact,
rotationally symmetric manipulators without end-effectors. These robots
more or less satisfy the hidden assumption that the authors did not mention.
Figure 2.10 depicts how the collision-free area of a line segment is identical
to that of a capsule.

14

.. 2.5. Burs

Line robot

Capsule
robot

Collision-
free area

Obstacles

Figure 2.10: Collision-free area of a line segment and of a capsule.

2.5.2 RBT for manipulators

Rapidly-exploring Bur Tree (RBT) is a planning algorithm based on the RRT
paradigm in that every new node is connected to its previous node with a
collision-free edge. When the distance to the closest obstacle dc is larger than
dcrit, then it grows the tree using a bur of free space, Equation 2.9. In the
case when the distance to the closest obstacle is smaller than dcrit, then the
algorithm switches to regular RRT Extend, Algorithm 2. The structure of
the algorithm is based on RRTConnect [12]. It uses two trees, one starting in
the starting configuration qinit and the other tree starting in qgoal, growing
both of them using burs of free space, Algorithm 7. After every extension it
attempts to connect these two trees using a custom connect algorithm that
uses a bur, but with a single spine at a time, Algorithm 8. BurConnect stops
when a special connection heuristic is satisfied, Algorithm 8 Line 14.

2.5.3 RBT for rigid bodies

The bur computation in the previous section is only valid under the assumption
that the robot is a line-segment model. For rigid bodies, the concept of a
kinematic chain does not apply. Lacevic et al. 2018 [20] propose a method
how to calculate burs for rigid bodies in Lie groups SE(2) and SE(3). A rigid
body is characterized by its geometry G, translation t and rotation ϕ. A
rigid body must be represented by all of its geometric points in addition to
their translations and rotations because otherwise situations like the one in
Figure 2.11 become possible. If it were represented only by its center point
like in the line-segment model from the previous section then the center of
the robot would be able to stay still while the rest of the robot rotates freely
about its axis of rotation.

Lacevic et al. 2018 [20] introduce a generalized collision-free bubble for
a rigid body. The original bubble of free space for 2D objects in SE(2), as
defined in Quinlan 1995 [18] is

B(t, ϕ, dc) =


x

y
θ


∣∣∣∣∣∣∣
∥∥∥∥∥
[
x
y

]
−
[
tx

ty

]∥∥∥∥∥
2

+ r3|θ − ϕ| < dc, y ∈ Cfree

 , (2.12)

15

2. Related work.....................................
Algorithm 7 RBT-CONNECT(qinit, qgoal) [3]

1: Ta ← qinit, Tb ← qgoal
2: for k = 1 to kmax do
3: Qe ← {}
4: for i = 1 to N do
5: qei

← RandomConfig()
6: Qe.Add(qei

)
7: end for
8: qnear ← Nearest(qe1 , Ta)
9: for i = 1 to N do ▷ Offset target configurations for bur

10: Qe(i)← δ ·Normalize(Qe(i)− qnear) ▷ δ = joint range
11: end for
12: for i = 1 to N do
13: if dc(qnear) < dcrit then
14: if Extend(Ta, qnear, ∅, qnew) = Trapped then ▷ Algorithm 2
15: continue
16: end if
17: else
18: Ta.Add(Bur(qnear, Qe, dc(qnear)))
19: qnew ← Endpoint(Bur(qnear, Qe, dc), qe1)
20: if BurConnect(Tb, qnew) = Reached then ▷ Algorithm 8
21: return Path(Ta, Tb)
22: end if
23: Swap(Ta, Tb)
24: end if
25: end for
26: end for
27: return Failure

where t is the translation, ϕ is the rotation of the robot. r3 represents the
maximum distance from the origin of the robot to any other point on the
robot, Figure 2.12.

The collision free bubble for SE(3) is then defined as

B(q, dc) =
{

y
∣∣∣ ∥∥∥yp − qp

∥∥∥
2

+ rT
ϕ |yϕ − qϕ| < dc, y ∈ Cfree

}
, (2.13)

where rT
ϕ = [rx ry rz] are the radii of enclosing cylinders of the robot with

respect to its roll, pitch, and yaw axes respectively, the three cylinders
are illustrated in Figure 2.13. The complete collision-free bubble CB from
Equation 2.8 stays unchanged. Calculating rϕ for each rigid body can be done
before planning, as is obvious from Figure 2.13. The formula for calculating
radii is simply largest magnitude of the projections of all points on the three

16

.. 2.5. Burs

Algorithm 8 BUR-CONNECT(T , q) [3]
1: qn ← Nearest(q, T), q0 ← qn

2: repeat
3: if dc(qn) > dcrit then
4: qt ← Endpoint(Bur(qn, q, dc(qn)), q)
5: ∆s ← |qt − qn|
6: qn ← qt

7: if qn = q then
8: return Reached
9: end if

10: else
11: if Extend(T , qn, q, qnew) = Trapped then
12: return Trapped
13: end if
14: if |qn − q0| ≥ |q− q0| then
15: return Reached
16: end if
17: end if
18: until ∆s < Threshold
19: return Trapped

ObstacleRo
bo
t

Figure 2.11: Rigid body rotational collision.

yz, xz, xy planes:

r =

rx

ry

rz

 =


maxp∈G

√
p2

y + p2
z

maxp∈G
√

p2
x + p2

z

maxp∈G
√

p2
x + p2

y

 , (2.14)

where G is the geometry of the rigid body, p ∈ G is any point on the geometry.

Computing rigid body burs

Rigid body burs end up having the same general form as line-segment model
burs. If we take it directly from Lacevic et al. [20], Equation 2.9 becomes

tk+1 = tk + φ(tk)
g(qe, q(tk))(1− tk), (2.15)

where
g(y, q) = ∥yp − qp∥2 + rT

ϕ |yϕ − qϕ| . (2.16)

17

2. Related work.....................................

Robot

Figure 2.12: Rigid body radius in 2D.

(a) : Radius about x-axis. (b) : Radius about y-axis. (c) : Radius about z-axis.

Figure 2.13: Cylinders encompassing a rigid body along xyz-axes.

Note that in Equation 2.15, the function φ(t) stays the same as in Equa-
tion 2.10. φ(t) = dc − ρR(q1, q2), which means that ρR, Equation 2.7, works
even for rigid bodies. For all points p on the robot R and the translations
of each of those points it takes the largest of those translations to be the
final distance between configurations. A visualization of the calculation is
depicted in Figure 2.14.

2.5.4 RBT extensions

The following two algorithms are extensions of the RBT algorithm again by
Lacevic et al. The first one changes the number of spines in a bur based on
the distance to the closest obstacle [21], thus improving planning efficiency;
the second one assumes obstacles are convex and approximates them with
planes and recalculates the estimate of the distance to the closest obstacle
using these planes when it reaches the edge of the original bur [22].

Adaptive RBT

Adaptive RBT by Lacevic et al. [21] creates a bur with a number spines
proportional to the distance to the nearest obstacle dc. All formulas presented
perform comparably well, so we will only present the simplest one:

f1(dc) = Ncrit + Ns −Ncrit

ds − dcrit
(dc − dcrit), (2.17)

where f1(dc) is the number of spines for a given distance dc to the nearest
obstacle, Ncrit is the minimum number of spines e.g., Ncrit = 2, Ns is the

18

.. 2.5. Burs

Robot

Robot

Figure 2.14: Rigid body maximum movement.

number of the optimal number of spines, e.g. Ns ≈ 7 from [3], ds is the
distance to the closest obstacle that is to be expected most commonly. This
brings a planning-time speed-up of approximately 25% compared to the plain
version of RBT [21]. However, the authors tested the algorithm only for
chain-of-line-segments revolute-joint manipulators.

RGBT

Rapidly-exploring Generalized Bur Tree (RGBT) [22] assumes that obstacles
are convex. This means that in the worst case an obstacle is an infinite plane:

Ai,j =
{

x
∣∣∣∣(p2

i,j − p1
i,j

)T (
x− p2

i,j

)
= 0

}
, (2.18)

where p2
i,j is the point on obstacle j that is closest to segment i, p1

i,j is the
point on segment i that is closest to segment j. The planar approximation of
a cube obstacle is illustrated in Figure 2.15.

Normally, a bur is created using the initial query of distance dc and extended
until any part of the robot moves that distance. In this case, however, when
the edge of the complete bubble boundary is reached, i.e., the regular bur is
created, one can switch to calculating the distance using the point-to-plane
distance formula. As long as segment i stays on the inside of all planes Ai,j

defined by it and all obstacles j, then this algorithm is able to extend to
that free area in a single step. Now that we consider all segments i and all
obstacles j, then the Equation 2.9 changes appropriately so no single segment
can reach any obstacle during the creation of a spine:

tk+1 = tk +
mini

((
minj dj,i

approx

)
i
− ρR(qk)i

)
∑n

i=1 ri(qk)|qi
e − qi

k|
(1− tk), (2.19)

where i is the i-th segment, j is the j-th obstacle, ρR is the metric distance
function from Equation 2.7, dj,i

approx is the distance between segment i and
obstacle j. The authors recalculate the distance estimate dc ≈ minj dj,i

approx

every five iterations so as not to make the general bur calculation too compu-
tationally expensive.

19

2. Related work.....................................

RobotObstacle

Figure 2.15: Planar approximation of an obstacle.

2.6 BURG–Toolkit

BURG–toolkit by Rudorfer et al. 2022 [8] is a set of open-source tools for
Benchmarking and Understanding Robotic Grasping. It allows users to..1. create virtual scenes for generating training data and performing grasping

in simulation,..2. create print-out templates to recreate virtual scenes in the physical world,..3. share the scenes with other researchers to foster comparability and
reproducibility of experimental results.

The toolkit contains a library of household object models as well as models of
obstacles for modelling the environment. This enables the user to benchmark
not only grasping algorithms for graspable objects in the library, but also
collision-avoidance in the context of grasping and motion planning. For
example, an environment with a grasp target and obstacles can be created to
test a motion planning algorithm, Figure 2.16.

2.6.1 Summary

Planners introduced in this section have a combination of desirable properties
and also a lack of other features. IK-RRT [16], J+RRT [23] and workspace
RRT [17] are all able to plan towards workspace goals but are based on RRT
and may have slow exploration due to inherent properties of RRT. RBT [3]
on the other hand has quick exploratory properties both in configuration and
in workspace, but so far lacks any kind of adaptation for workspace goals. It
would either have to rely on an existing inverse kinematics solver or use some
sort of biasing like J+RRT. In the next section we will investigate how to
adapt RBT to apply more generally to rigid-body manipulators and discuss
possible extension for it. Testing of planners will be done in an environment
created using the BURG–toolkit.

20

.................................... 2.6. BURG–Toolkit

Figure 2.16: A scene with a screwdriver as grasp target and a shelf on a table
as obstacles.

21

22

Chapter 3
Methods

In this section we will delve deeper into the burs of free space algorithm.
In [3], we were introduced to line-segment revolute-joint burs, and in [20], the
idea of a bur was adapted to rigid bodies. The question remains whether a
bur can be adapted into a more general form such as a rigid-body manipulator.
Lacevic et al. [3] compute burs for a revolute-joint manipulator whose forward
kinematics determine world position solely by joint angles:

frevolute(q) = frevolute(θ1, . . . , θn) =

 p1(θ1)
...

pn(θ1, . . . , θn)

 , (3.1)

where a configuration q is defined as the list of joint angles: q = [θ1, . . . , θn]
and frevolute(q) = [p1, . . . , pn] are the workspace positions of the segments
and end-effector. To compute a rigid-body bur, on the other hand, one needs
to take into account workspace translation t and rotation ϕ:

frigid(q) = frigid(t, ϕ) =

t + R(ϕ)p1
...

t + R(ϕ)pn

 , (3.2)

where a configuration q is defined as the world translation and rotation
directly represented as vectors: q = [t, ϕ] = [tx, ty, tz, ϕx, ϕy, ϕz], R(ϕ) is
the rotation matrix corresponding to ϕ and pi is the position of point i on
the robot geometry pi ∈ G, i = 1 . . . n. All derivations in this chapter are
configuration-space agnostic, meaning that configurations are represented as
a general vector of values q = [q1, . . . , qn] that can correspond to rotational,
translational or any other type of movement a joint can perform.

A comparison of the properties of both bur types that use the forward
kinematics functions from Equations 3.1, 3.2 respectively is summarized in
Table 3.1.

We can think of a rigid body as a set of points statically connected to the
rigid body’s origin, which itself is connected to the workspace origin through
multiple translational and rotational joints, Figure 3.1.

In subsequent sections we aim to unify the framework under which burs
of free space are computed: revolute-joint manipulators use projections of

23

3. Methods.......................................
Implemented property Revolute Bur Rigid Body Bur
Rotation YES YES
Translation NO YES
General forward kinematics YES NO
Kinematic chain YES NO
Includes geometry of robot NO YES

Table 3.1: Classification of the applicability of each bur algorithm.

Figure 3.1: Polygon rigid body represented by a tree graph.

link positions on joint-planes to calculate burs, rigid-body burs need the rigid
body’s position and translation to be represented directly as configuration
coordinates, and a robotic manipulator is a mixture of both.

3.1 Calculating Burs

A bur’s spine is computed using Equation 2.9. The equation consists of two
parts:. In the numerator there is the function φ(t) = dc − ρR(q, q + t(qe − q),

which in turn contains ρR(q1, q2) = maxp∈R ∥fp(q1)− fp(q2)∥. The
function ρR(q1, q2) has already been defined generally enough for both
types of burs, since fp(q) is the forward kinematics of each point on the
robot p ∈ R.. In the denominator there is rT

k |qe − qk|, which later in Equation 2.15
changes to ∥yp − qp∥2 + rT

ϕ |yϕ − qϕ|.

If we wish to use both types of burs then we must unify the two approaches.
It is obvious that at the moment we cannot write down the collision-free
bubbles from Equations 2.6, 2.12 and 2.13 in one general formula. Let us
then define a more general collision-free bubble:

B(q, d, l2, l1) =

=

y

∣∣∣∣∣∣
√∑

i∈l2

(di|yi − qi|)
2 +

∑
i∈l1

di|yi − qi| < dc, y ∈ Cfree

 (3.3)

where d is the vector signifying the lower bound of the distance when the
robot changes from configuration q to configuration y, l2 are the indices of
coordinates in q that are measured using the L2-norm, l1 are the indices of

24

................................... 3.1. Calculating Burs

(a) : Collision-free bubbles for
norms L2 and L1 of a rigid body
without rotation.

(b) : Collision-free bubbles for norm L2
with varying degrees of conservativeness
of a rigid body without rotation.

Figure 3.2: Cylinders encompassing all subsequent links of the robot.

coordinates in q that are measured using the L1-norm. The bubbles we have
already been introduced to take the following forms:. Revolute-joint bubble, Equation 2.6: l2 = [], l1 = [1, . . . , n], d =

[r1, . . . , rn].. 2D rigid-body bubble, Equation 2.12: l2 = [1, 2], l1 = [3], d = [1, 1, r3].. 3D rigid-body bubble, Equation 2.13: l2 = [1, 2, 3], l1 = [4, 5, 6], d =
[1, 1, 1, r1, r2, r3].

The effect of parameters l1, l2 and distance estimates d is depicted in Fig-
ure 3.2. We can see that switching from L2 norm to L1 makes the bubble more
conservative. Increasing the norm of vector d also increases the conservative-
ness by making the bubble more sensitive to small changes in configuration.

In the following sections we will attempt to derive a method to calculate
burs that do not rely on special cases. The simplest yet at the same time
most general bubble is the one which uses the 1-norm:

B (q, d, l2 = [] , l1 = [1, . . . , n]) =

=
{

y
∣∣∣∣∣

n∑
i=1

di|yi − qi| < dc, y ∈ Cfree

}
(3.4)

The update that corresponds to this bubble is

tk+1 = tk + φ(tk)∑n
i=1 di(tk)|qi

e − qi
k|

(1− tk), (3.5)

where tk ∈ [0, 1] is the progress parameter value after step k, starting at tk = 0,
qe is the target endpoint, qk is the configuration in step k: qk = q+tk(qe−q)
and di is the lower bound estimate of distance moved for a given change
coordinate i.

3.1.1 Revolute joints

We will now see how we can generalize the computation of the bur. First, let
us take a look at the vector of radii r encompassing all links of the robot for

25

3. Methods.......................................

Robot

Radii of
encompassing

cylinders

Figure 3.3: Encompassing radii from the first joint to all subsequent links.

each joint respectively. Visualizing the radius computation in Equation 2.11,
we see that in Figure 3.3 the largest radius for the first joint is r2. We shall
denote this radius as r1,2. By extension we define that rj,i is the encompassing
radius from joint j to link i.

The essential thing about the radii is that they are scalar values: we do
not actually require the projected position on the plane defined by the axis
of the joint. In the 2D case it is easy to see that the radius rj,i is actually
the magnitude of the derivative of the position of link i w.r.t. joint j:

rj,i =
∥∥∥∥∥∂pi(q)

∂qj

∥∥∥∥∥ , (3.6)

where pi(q) is the i-th link’s position and qj is configuration q’s j-th coordi-
nate.

We can acquire the radius of the cylinder that encompasses the whole robot
from joint j by taking the maximum of Equation 3.6 over all links i affected
by joint j:

rj = max
i=j...n

∥∥∥∥∥∂pi(q)
∂qj

∥∥∥∥∥ = max
i=j...n

∥Jj,i∥ , (3.7)

where Jj,i is the Jacobian of link pi w.r.t. qj .
An illustration of how the Jacobian approach works in 3D is depicted in

Figure 3.4. Figure 3.4a contains the vector of the Jacobian together with the
projected radius in their respective world poses. In Figure 3.4b there is the
rest of the robot together with the Jacobian, both offset along the axis of the
joint. It is clear that in both figures the Jacobian is identical.

3.1.2 Prismatic joints

For prismatic joints there does not exist the concept of axis of rotation nor
radius that encompasses every moving link of the robot. The original goal of
encompassing radii was to estimate the maximum possible movement for a
given change in coordinates in configuration space. The rigid-body bubble
of free space, Equations 2.12 and 2.13, does indeed contain an estimate of
distance for prismatic joints — the exact distance itself. As it happens,
changing the coordinates in a prismatic joint directly translates to a change in
workspace coordinates. As in the previous section, our task is to determine by

26

................................... 3.1. Calculating Burs

(a) : Rotation in the plane of the joint.
(b) : General rotation about the joint
offset along the rotation axis.

Figure 3.4: Cylinders encompassing all subsequent links of the robot.

how much ∆p the robot moves if we change the prismatic joint configuration
coordinate q by ∆q. The equation characterizing a prismatic joint is

pprism(q) = p0 + ∆p · q, (3.8)

where q is the coordinate of the prismatic joint, p0 is the link origin and ∆p
defines proportionality of q w.r.t. the translation of the link. It is obvious
that an estimate of the translation of a prismatic joint is again the Jacobian:

∂pprism(q)
∂q

= J(q) = ∆p. (3.9)

The distance estimate vector d is calculated like

dj,i = max
i=j...n

∥∥∥∥∥∂pi(q)
∂qj

∥∥∥∥∥ = max
i=j...n

∥Jj,i∥ . (3.10)

Unlike revolute joints, however, prismatic joints affect all links equally, there-
fore for implementation purposes it is unnecessary to take the maxima of the
partial Jacobians for each link; only the first value suffices.

3.1.3 Revolute and Prismatic Bur

We now have burs that are more general than before. They include revolute
as well as prismatic joints; not only that, we can use the Jacobian the same
way to calculate distance estimates for both types of joints. We can now
update Table 3.1 to 3.2.

3.1.4 Added bonus for workspace goals

In the case of planning with a workspace goal, calculating and saving Jacobians
becomes advantageous thanks to the fact that they can be reused when
extending towards the goal. The process of biasing the end-effector towards
a goal uses the pseudo-inverse of Jacobian, which itself is calculated from the
Jacobian.

27

3. Methods.......................................
Implemented property Revolute and Prismatic Bur Rigid Body Bur
Rotation YES YES
Translation NO−→YES YES
General forward kinematics YES NO
Kinematic chain YES NO
Includes geometry of robot NO YES

Table 3.2: Classification of the applicability of each bur algorithm.

3.1.5 Including geometry for mobile robotic manipulators

Recall that in Figure 3.1, a rigid body is represented as a tree graph. To
obtain a bur for a manipulator that is composed of rigid bodies we therefore
need to take into account how all these points move with each segment. We
can split this task into two sub-tasks:. recalculating encompassing radii for each segment in each configuration;. calculating distance between configurations.

Calculating distance between configurations has been defined, but it may prove
slow because Lacevic et al. [20] consider all points on the robot geometry p ∈ G.
For geometries with a higher number of triangles, the cost of computation
increases significantly since the complexity of ρR is linearly proportional to
the number of points. Results from Lacevic et al. [20] indeed show that for
the most complex geometry tested, planning times are comparable to other
planners they benchmarked. Not only that, RbtConnect is only marginally
faster than even the basic RRT [11] in that scenario.

The only missing feature in the kinematic-chain bur from Table 3.2 is
geometry. Let us derive the Jacobian for the points on the geometry of the
robot when linked into a chain. The Jacobian takes the form:

Jj,i =
[
Jp

j,i

Jϕ
j,i

]
∈ R6×n, Jp

j,i, Jϕ
j,i ∈ R3×n. (3.11)

Points from each segment belong to its local frame F . A set of points
belonging to local frame F of segment i is depicted in Figure 3.5. The
positional Jacobian Jp

j,i only approximates the movement of the local origin
of the segment i. To approximate movement of the other points k on the
segment, we first write down their equation:

pW
k = pW

k (θ1, . . . , θn) + RF−→W(θ1, . . . , θn)pF
k , (3.12)

where RF−→W(θ1, . . . , θn) rotates points from the local frame F to the
workspace frame W. It is clear now that taking the derivative of the above
expression gives us

∂pW
k

∂θj
= pW

k (θ1, . . . , θn)
∂θj

+
(
pF

k

)T ∂RF−→W(θ1, . . . , θn)
∂θj

=

= Jp
j,i +

(
pF

k

)T
Jϕ

j,i (3.13)

28

................................... 3.1. Calculating Burs

Figure 3.5: Geometry of a chain-link robot and the points whose movement
estimations are calculated.

where Jp
j,i is the positional Jacobian as we have already discussed,

(
pF

k

)T
Jϕ

j,i

is the positional Jacobian of the nested points.
Simplifying derivation for the 2D case again, considering a case like in

Figure 3.5, we denote points belonging to the geometry of a segment with
zero offset in the global frame as

pW = RF−→W(θ)pF (3.14)

Taking the above expression and linearizing it at point θk:

∂R(θ)p
∂θj

|θk = pT ∂R(θ)
∂θj

|θk = pT ∂R(θk)
∂θj

·∆θ. (3.15)

Analogically for 3D, we can consider each axis of rotation independently of
each other and linearize at point θk:

∂R(θ)p
∂θj

|θk = ∂R(θ)p
∂ϕ

|θk = ∂R(θ)p
∂ϕx, ϕy, ϕz

|θk =

=pT ∂R(θ)
∂ϕx

|θk + pT ∂R(θ)
∂ϕy

|θk + pT ∂R(θ)
∂ϕz

|θk =

=pT ∂R(θk)
∂ϕx

· ϕx + pT ∂R(θk)
∂ϕy

· ϕy + pT ∂R(θk)
∂ϕz

· ϕz =

=pT

(
∂R(θk)

∂ϕx
· ϕx + ∂R(θk)

∂ϕy
· ϕy + ∂R(θk)

∂ϕz
· ϕz

)
, (3.16)

where ϕx, ϕy, ϕz are the angles from the rotational part of the Jacobian Jϕ.
Now, for every point pk in segment i we want to get an estimate of the
distance it can move. We have proven in Sections 3.1.1 and 3.1.2 that taking
the norm of the Jacobian of a point on the kinematic chain gives us an
estimate of the distance travelled. Thus, all we have to do is calculate the
norm of the Jacobian of point pk with respect to joint j for which we want
to calculate the minimum encompassing radius or distance estimate. Taking

29

3. Methods.......................................
the norm of Equation 3.13 and substituting the rotational Jacobian from
Equation 3.16:∥∥∥∥∥∂pW

i (θk)
∂θj

∥∥∥∥∥ =
∥∥∥∥Jp

j,i(θ
k) +

(
pF

i

)T
Jϕ

j,i(θ
k)
∥∥∥∥ =

=
∥∥∥∥∥Jp

j,i(θ
k) +

(
pF

i

)T
(

∂R(θk)
∂ϕx

ϕx + ∂R(θk)
∂ϕy

ϕy + ∂R(θk)
∂ϕz

ϕz

)∥∥∥∥∥ , (3.17)

where θk is the angle at which the rotation of point pi was linearized, Jϕ
j,i(θk) =

[ϕx, ϕy, ϕz] are the xyz components of the rotational Jacobian. Same as in
Equations 3.7 and 3.10, for every joint j and point k on segment geometry i,
we would have to iterate over all points on every segment to get the maximal
translation:

dj = max
i=j...n

(
max

k=1...m

∥∥∥∥∥∂pW
i,k

∂θj

∥∥∥∥∥
)

(3.18)

Iterating over all points can be slow and implementation is prone to error.
Instead, we can separate the translation and rotation parts of the Jacobian
from Equation 3.17:

∥∥∥∥∥∂pW
i

∂θj

∥∥∥∥∥ =
∥∥∥∥Jp

j,i +
(
pF

i

)T
Jϕ

j,i

∥∥∥∥ ≤ ∥∥∥Jp
j,i

∥∥∥+
∥∥∥∥(pF

i

)T
Jϕ

j,i

∥∥∥∥ ≤ ∥∥∥Jp
j,i

∥∥∥+

∥∥∥∥∥∥∥
ri

xϕj
x

ri
yϕj

y

ri
zϕj

z


∥∥∥∥∥∥∥ ,

(3.19)
where r is the vector of encompassing radii of segment i’s geometry, as has
been illustrated in Figure 2.13 for rigid bodies, Jϕ

j,i = [ϕj
x, ϕj

y, ϕj
z] are the

elements of the rotational Jacobian for joint j. The above equation is easier to
compute, and it incorporates the radii that are readily available from Lacevic
et al. [20]. In addition, the equation above can be computed only once per
segment, as opposed to Equation 3.18, which has to be calculated for every
point in every segment of the robot’s geometry.

Combining the maximum function from Equation 3.18 and the upper
approximation of its components from Equation 3.19, we get the total upper
approximation of the translation of all points connected to joint j:

dj = max
i=j...n

∥∥∥Jp
j,i

∥∥∥+

∥∥∥∥∥∥∥
ri

xϕj
x

ri
yϕj

y

ri
zϕj

z


∥∥∥∥∥∥∥
 . (3.20)

This final equation is of quadratic complexity, same as the original method
to calculate radii from Equation 2.11, but now it also requires the Jacobian
to be calculated, which adds some complexity because the Jacobian requires
matrix multiplication to be calculated.

We now have burs that are once more general than before. They include
revolute as well as prismatic joints and take into account the movement of
points on the geometry of each segment of the robot. We can now update
Table 3.2 to 3.3. The bur can now take into account forward kinematics of
rigid bodies as well as kinematic chains.

30

....................................3.2. Extended RBT

Implemented property Rigid Body Chain Bur Rigid Body Bur
Rotation YES YES
Translation YES YES
General forward kinematics YES NO
Kinematic Chain YES NO
Includes geometry of robot NO−→YES YES

Table 3.3: Classification of the applicability of each bur algorithm.

Obstacle

Figure 3.6: Bur distances used for calculation. Red: areas in which link endpoints
can move — equivalent of the complete bubble CB but in workspace.

3.2 Extended RBT

There is a special case where even burs can be considered to be too restrictive.
Recall in RGBT [22] that obstacles are at each distance query assumed to be
infinite planes because the obstacles are convex. What happens if obstacles
are non-convex? We will now use the same thought process to approximate
the general case. In Figure 3.6 we can see the collision-free area that is
generated by a single obstacle and how it restricts the movement of the whole
robot. The red circles show areas where the endpoints of each segment are
able to move to in the case of a regular bur.

The regular bur assumes that only the single closest obstacle determines
the whole collision-free space:

Wfree = f(q, dc), (3.21)

where Wfree is the collision-free workspace, q is the configuration for which
Wfree is calculated and dc is the distance to the closest obstacle. In reality,
the collision-free space can more generally be defined by the closest distance
between each segment and the environment:

Wfree = f(q, dc), (3.22)

where dc is the vector of closest distances for each segment of the robot. In
Figure 3.7 we can see two cases of regular bur extension superimposed on the
total collision-free space as defined by the robot segments and surrounding
environment O.

31

3. Methods.......................................

4

Obstacle

(a) : Lower links have less free dis-
tance than higher links.

Obstacle

Obstacle

(b) : Lower links have more free dis-
tance than higher links.

Figure 3.7: General collision-free area.

Obstacle

(a) : Slightly extended bur for second
segment.

Obstacle

(b) : Highly extended bur for second
segment.

Figure 3.8: Configurations where expansion of subsequent links beyond the
boundary of a bur is possible.

In Figure 3.7a, the second segment has a comparatively larger collision-
free area than the first segment. In such cases where later links have more
collision-free space, we can extend movement by freezing the lower joints
and continuing growing a bur, but only for later links of the robot using the
next smallest distances each time. Regular forward kinematics fC→W and the
vector of smallest distances to obstacles for each segment dc is all we need to
continue growing the now pseudo-bur.

In Figure 3.8a there is a less generous, and in Figure 3.8b a more generous
case, where this special case of extended bur helps. It must be noted that this
extended bur helps only when the lower links of the robot are limited — in
Figure 3.7b it is of no use that the base is free but the end-effector restrained.
The process for calculating an extended bur is described in Algorithm 9. It
first creates a regular bur, then it starts on the lowest joint that still has a
non-trivial remaining distance budget and extends the bur further, repeating
this over all subsequent joints that have, after each additional step, some
non-trivial distance left to move.

The extended bur does not in fact break star-convexity because the ex-
tension it performs on a regular bur is the product of a Minkowski sum of

32

....................................3.2. Extended RBT

Algorithm 9 ExtendedBur(q, Qe, dc, imin), Figure 3.8 and 3.9
id = imin(0) ▷ imin = argsort(dc)
B← Endpoints(q, Qe, dc(id)) ▷ Generate bur endpoints.
for j = 1 to Length(dc) do ▷ Next smallest distance

if imin(j) < id then
continue

end if
id ← imin(j)
for k = 0 to Length(B) do

d∆ ← dc(id)− ρR(q, B(k)) ▷ Distance left for segment i
if d∆ < dcrit then ▷ To save computation

continue
end if
qM ← Mask(Qe(k), id ▷ Zeroes out elements with index < i
B(k)← Endpoints(B(k), qM , d∆)

end for
end for
return B

a convex set points with the original bur. The 2D case is illustrated in Fig-
ure 3.9. It is formed by splitting the original bur horizontally, then stretching
each half in the direction of the half-plane in which it is located. This is
equivalent to a Minkowski sum with a line segment oriented into the vertical
half-plane in which the corresponding half of the bur is located.

Caveat

In cases like the one in Figure 3.7b where lower links have more collision-free
distance remaining than later links we cannot simply freeze later links and
move with the base of the robot because moving earlier links affects all
subsequent links. Keeping those inside their respective collision-free areas
is not straightforward and would require further inquiry. Moreover, the
extended bur is the opposite case which we would like to have if we want the
end-effector of a robot to approach and grasp objects. Having the end-effector
close to an obstacle highly restricts the robot’s movement as a whole.

33

3. Methods.......................................

Figure 3.9: Extended bur — it is split in the middle and “stretched”.

34

Chapter 4
Results

In this chapter, we discuss our findings about the presented algorithms and
their runtime results for scenarios of varying difficulty. First, we will examine
available existing implementations of RBT. In Section 3 we derived how
to calculate a bur for a rigid body manipulator, combining the algorithms
from [3] and [20]. The bur calculation for revolute-joint, kinematic-chain
robotic manipulators from [3] unfortunately causes collisions at some endpoints
because it ignores robot geometry and allows some points of the geometry
to move beyond the complete bubble CB. For that reason we implemented
bur calculation with a single collision check at the end of each endpoint
calculation. We have implemented the calculation of burs using Jacobians
according to Equations 3.7 and 3.10 as well as the original version according
to Equation 2.11. The bur that needs no collision checks and incorporates
geometry uses Equation 3.20 to calculate distance estimates.

We have four types of scenarios as depicted in Figure 4.2. Each scenario
comes in five difficulties, however, we will only be testing the planners on the
scenarios where the greatest differences in performance among planners are
visible, namely scenarios of medium difficulty. We test three motion planners:
J+RRT, IK-RRT and J+RBT. For each scenario there were generated 200
target grasps using the Jogramop framework [24]. The starting configuration
that is common to all scenarios is visualized in Figure 4.1a. A sample goal
configuration along with the end-effector trajectory is depicted in Figure 4.1b;
the goal configuration is determined by the end-effector being close enough
in translation and rotation terms to a goal grasping pose. The distance score
between a grasp pose g and end effector pose e is calculated as follows:

Distance(e, g) = Translation(e, g) [mm] + Rotation(e, g) [deg] =

= 1000 ∥te − tg∥+ RadToDeg
(

acos
(

Tr(RT
e Rg)− 1

2

))
, (4.1)

where e = [Re, te] is the end-effector pose, g = [Rg, tg] is the grasp pose, Tr
is the matrix trace function. We usually stop at Distance = 50 as it is within
a few centimeters and a few degrees within the target grasp pose.

35

4. Results

(a) : Starting configuration. (b) : Goal configuration of scenario 2.

Figure 4.1: Start and goal configurations of scenario 2 with a solution trajectory
visualization.

(a) : Scenario 1. (b) : Scenario 2.

(c) : Scenario 3. (d) : Scenario 4.

Figure 4.2: Four tested scenarios.

4.1 RBT implementation

We use the Orocos Kinematics and Dynamics Library (KDL) [25] for loading
Unified Robot Description Format (URDF) files of robots, and we use the
library to perform forward kinematics, inverse kinematics and Jacobian
calculations. For collision-checking and distance-checking we use the Proximity
Query Package (PQP) [26]. For nearest neighbours we use the FLANN library
with a kd-tree approach [27].

The algorithm that we have implemented to compare to J+RRT, Algo-
rithm 4, and to IK-RRT 3 is described in Algorithm 10. It is analogical to
J+RRT, only it replaces the regular RRT part with the RBT part. It uses
bur-based extensions where possible and only reverts back to basic RRT steps
when the closest obstacle is closer than a given threshold dcrit.

36

................................... 4.2. Hyperparameters

Algorithm 10 J+RBT(qinit, pobj, G), qinit = start configuration, pobj =
object pose, G = set of grasp poses
T .AddConfiguration(qinit)
for k = 1 to kmax do

Qe ← {}
for i = 1 to N do

qei
← RandomConfig()

Qe.Add(qei
)

end for
qnear ← Nearest(qe1 , T)
for i = 1 to N do ▷ Offset target configurations for bur

Qe(i)← δ ·Normalize(Qe(i)− qnear) ▷ δ ≈ joint range
end for
if dc(qnear) < dcrit then ▷ dc = distance to closest obstacle

if Extend(T , qnear, ∅, qnew) = Trapped then ▷ Algorithm 2
continue

end if
else
T .Add(Bur(qnear, Qe, dc(qnear))) ▷ Bur from Algorithm 6

end if
if Rand() < psteer then

Solution ← ExtendToGoal(T , pobj, G) ▷ Algorithm 5
if Solution ̸= NULL then

return Solution
end if

end if
end for
return Failure

4.2 Hyperparameters

Lacevic et al. [3] [21] [20] [22] define some of the hyperparameters but not all
of them. During testing of RBT we found out that to truly replicate RBT
we needed the source code because Lacevic et al. omitted some important
parameters. The missing parameter was the number of collision checks per
unit of distance travelled in the workspace p∆. For reference, Matlab’s built-
in manipulator RRT planner performs one collision check every 1 cm [28].
Lacevic et al. use collision checking not in terms of collision checks for every
unit of distance moved 1

p∆
[m−1] but in terms of collision checks per unit

of configuration space, which in their case translates to collision checks per
radian 1

q∆
[rad−1]. This causes the distribution of their collision checks to be

inconsistent in the workspace, however, the frequency of collision checking
is high enough so as to avoid phasing through obstacles. Converting from
configuration units to workspace units this comes out as approximately one
collision check every 5 mm for the Franka Emika Panda manipulator from

37

4. Results
Figure 2.1, double that of which Matlab uses. Hyperparameters that we used
during testing are listed in Table 4.1.

Hyperparameter Value
ε 0.1
δ 2π
dcrit 0.03
Collision resolution 0.005
Bur spines 7

Table 4.1: Table of hyperparameters.

4.3 Bur endpoint calculation

We have implemented three different methods to calculate burs. They are
characterized in Table 4.2. The first bur is a true bur in the sense that it
reaches its endpoints without colliding with the environment.

We have found that for rigid-body robotic manipulators it is unnecessary
to calculate the distance between the configurations as the highest distance
moved for each point on the robot’s geometry as defined in Equation 2.7.
Simply calculating the distances moved by each link is sufficient to fulfill the
function of ρR from Equation 2.9. In total, we have derived three different
bur spine endpoint calculations. In Table 4.2 we see the distinct properties of
each endpoint calculation: the first one is the only one that uses the robot
geometry, the second and third one are similar in that they use the kinematic
chain representation of the robot as opposed to a series of rigid bodies. The
second and third one also need a collision check at the end because they do
not take into account the robot geometry.

Robot Distance estimate Collision check
Rigid body Equation 3.20 No

Kinematic chain Equations 3.7, 3.10 Yes
Kinematic chain Equation 2.11 Yes

Table 4.2: Endpoint calculation types

4.3.1 Planning time

We shall now compare the endpoint calculations from Table 4.2 how they
fare against each other. The first two are the ones we have derived in the
last chapter, and the third one is the original method for bur calculation
according to [3], only with an additional collision-check at the end of each spine.
Collision checking and distance checking speeds depend on the number of
vertices in the robot’s mesh, therefore we are measuring how the computation
of endpoints depends on the number of vertices. We have two meshes: a
simplified, box-like mesh and the original collision mesh. The full mesh

38

............................... 4.3. Bur endpoint calculation

(a) : Original robot mesh. 104 vertices. (b) : Simplified robot mesh. 102 vertices.

Figure 4.3: Original and simplified robot meshes.

contains on the order of 104 triangles with details roughly on par with the
model in Figure 4.2. The simplified collision mesh is depicted in Figure 4.3b
and the original full-resolution collision mesh is depicted in Figure 4.3a. We
also measure the speed of calculation of each type of spine from Table 4.2.

In the ideal case, a bur should cover a significantly larger area of config-
uration space to offset the longer time of computation. In reality, though,
the computation of a bur depends on a few factors: the distance to closest
obstacle calculation, the encompassing radii calculation and the specific im-
plementation overall. The calculation of the distance to the closest obstacle
strongly depends on the number of vertices in the 3D models of the robot
and the environment. Fortunately, due to the sparser nature of the bur
tree it sometimes happens that we can reuse the distance check, thus saving
computation time.

In Figure 4.4 we plot the time needed to compute each type of bur depending
on how often the distance calculation for a given configuration is reused. On
the same graph we plot out the time needed to perform a number RRT
extensions equivalent to the number of spines of the bur, which Lacevic et al.
state as num spines = 7 being the optimal number. We have observed that
for scenarios of difficulty 4, the distance calculation is performed only 60% of
the time, i.e., the distance calculation is skipped 40% of the time. We can see
that distance-checking is greatly slowed down with increasing complexity of
the mesh. A slow-down of 3-4 times is to be expected with a detailed mesh,
as is the case in the original Franka Emika Panda collision mesh.

The times corresponding to the three types of burs from Table 4.2 are
plotted out in Figure 4.4. As could somewhat be expected, the specialized
projections from Equation 2.11 that give us the encompassing radii are faster
than the other two calculations, although only marginally. This, however,
comes at the cost of generality for prismatic joints and robot geometry.

The projections from Equation 2.11 that are necessary to compute the
original bur do not natively support rigid bodies or prismatic joints. To
handle robot geometry we perform a collision-check at the end of each bur
endpoint, and to handle prismatic joints we add a constant estimate of p∆
per unit of joint coordinate moved for prismatic joints. Furthermore, only bur
endpoints that do not collide are kept. Algorithm 11 describes the overarching
computation framework of the burs from Table 4.2.

39

4. Results
Algorithm 11 Bur(qnear, Qe, dc, BurType), Qe = target endpoints, dc = dis-
tance to closest obstacle, BurType ∈ {JacFull, JacPos, Proj}

Endpoints← {}
for i=1 to Length(Qe) do

for k=1 to 5 do
tk ← tk+1 (tk, Qe(i), qk) ▷ Equation 3.5
qk ← qnear + tk · (Qe(i)− qnear) ▷ Radii rk are calculated in qk

end for
if BurType ̸= JacFull then

if IsColliding(qk) then
continue

end if
end if
Endpoints.Add(qk) ▷ For kinematic chain burs in Table 4.2

end for
return {qnear, Endpoints}

Figure 4.4: Times to calculate endpoints based on the method of calculation.

4.4 Testing on scenarios

Based on the previous results we have two candidates of burs to test: the
original, projection-based bur with a collision-check at the end and the full
bur calculation that takes into account robot geometry but does not require a
collision-check at the end of each endpoint. We have run J+RBT with both
types of burs for all scenarios, ten times each, giving us a total of 200 runs
across all scenarios. In Figure 4.5 we see that the full bur solves the scenarios
more slowly than the projection-based bur with an additional collision check
at the end. From now on, when referring to J+RBT, we will be using the
one with the projection-based bur that uses collision checks at the end — the
third one in Table 4.2.

The results of planning times of planners J+RRT, Algorithm 4, IK-RRT,
Algorithm 3 and J+RBT, Algorithm 10, for medium difficulties of each

40

................................. 4.4. Testing on scenarios

Figure 4.5: Comparison of J+RBT planners with original extended vs full bur.

Figure 4.6: Trajectory of J+RBT in scenario 13.

scenario are depicted in Figures 4.7a, 4.7b, 4.8a and 4.8b. An example of a
trajectory generated by J+RBT in scenario 13 is in Figure 4.6.

We are using simplified models of the robot with a reduced number of
vertices to speed up planning times. The results show that J+RBT is
significantly slower than other planners. Let us investigate why that might
be the case.

4.4.1 Tree growth

The biggest change in the algorithm comes from the concept of a bur of free
space. Ideally, these burs are significantly larger than an equivalent number
of RRT extensions. Not only that, the number of nodes generated by RBT
should be significantly larger than the number of nodes generated by RRT
in the same amount of time. In Lacevic et al. [3] the authors provide data
about the nodes per second speed of their implementations of RRT and RBT.

41

4. Results

(a) : Scenario 13 planning time results. (b) : Scenario 23 planning time results.

Figure 4.7: Planning times for planners J+RRT, Algorithm 4, IK-RRT, Algo-
rithm 3 and J+RBT, Algorithm 10, for scenarios 1 and 2.

(a) : Scenario 33 planning time results. (b) : Scenario 43 planning time results.

Figure 4.8: Planning times for planners J+RRT, Algorithm 4, IK-RRT, Algo-
rithm 3 and J+RBT, Algorithm 10, for scenarios 3 and 4.

In easy scenarios, their RRT produces about as many collision-free nodes
per second as their RBT. In their hard scenario, RRT produces on the order of
half the number of collision-free nodes that RBT does. Comparing this to our
version of J+RRT and J+RBT: on our scenarios the ratio is comparable to
the “hard” scenarios from [3]. J+RBT produces about 50% more collision-free
nodes than RRT does. In Table 4.3 we can see the node generation rates of
each algorithm respectively. What is important here is the ratios between the
rate of generation of RRT nodes vs RBT nodes, not necessarily the absolute
amount. The ratio between RBT and RRT nodes is consistent between our
and the original methods. The inconsistency between the performance of our
J+RBT planner and the original RBT is strange. The ratios of the growth of
the nodes between RBT vs RRT and J+RBT vs J+RRT are comparable, yet
compared to the J+RRT our algorithm is significantly slower. The algorithm
we have implemented is exactly as was described in [3], yet it runs differently
relative to RRT. Let us take a look at the source code to see what is different
between the implementations.

42

................................. 4.4. Testing on scenarios

RRT (nodes/sec) RBT (nodes/sec)
Original (easy) 4200 [3] 4300 [3]
Original (hard) 2200 [3] 3800 [3]

Ours (all scenarios) 5200 7600

Table 4.3: Comparison of node generation rates between the original and our
versions of RRT and RBT algorithms. Rates vary depending on the CPU used.

4.4.2 Implementation

The RBT algorithm consists of a few main parts: distance checking, forward
kinematics, collision checking, bur calculation. We will dissect each part bit
by bit to see where the implementations differ. We will be referring to the
source code as provided by the authors in [29].

Distance checking

We perform distance checking using PQP; Lacevic et al. perform distance
checking using FCL, but fundamentally these two libraries perform almost
identical computations for meshes. Lacevic et al. reuse distance calculations
for given configurations, we do the same.

However, they have hardcoded that for the obstacle called table and for a
robot that has the property called with_table and for its first two segments
it calculates the closest distance to be infinity. We modify the distance
calculation differently in that we let the user specify as a parameter the
segment from which they want to include the ground-level to be included in
closest obstacle calculations. For example, we can set the ground level to be
z = 0 and only consider segments with index higher than i in the distance
calculations relating to the ground plane. The way Lacevic et al. hardcoded
the ground level with specific names and segment indices is useless for anyone
but the authors.

Forward kinematics

Both we and Lacevic et al. use the KDL library for forward kinematics and
URDF parsing. RRT performs significantly more forward kinematics compu-
tations than RBT, therefore any change to forward kinematics computations
disproportionately affects RRT more. We perform forward kinematics for a
kinematic chain once when creating a configuration. According to the source
code of Lacevic et al. they perform forward kinematics separately for each
segment, i.e., they first iterate towards the first segment, then iterate again
from the beginning towards the second segment and so on until the last
segment. This would slow down RRT more than it would slow down RBT.
Their forward kinematics end up having a complexity O(1

2N(N + 1)) for N
segments. For the Franka Emika Panda robot this ends up being 6x slower
even with compiler optimizations turned on.

43

4. Results

Figure 4.9: Scenario for an 8–DOF 2D manipulator by Lacevic et al. [3]. Start
and goal configurations left and right.

Collision checking

Lacevic et al. perform collision checks differently in their two papers [3], [20].
In [3] they do not specify the step size ε they use in RRT, but in the source
code there is ε = 0.1 for RRT. We have also set it to ε = 0.1, but in [20] they
set it to ε = 0.05. Regardless, we assume that the authors used RRT step
size ε = 0.1 and perform approximately 15 collision checks at every step as is
written in the source code.

Bur calculation

A bur requires a distance check and calculation of its spine endpoints. We
have already described how the distance check is performed and that we do
it the same way as Lacevic et al. As for the spine endpoint calculations, we
have found great differences in the internal implementations. The actual
high-level spine calculation as defined by Algorithm 11 is identical between our
two implementations. Internally, however, the radius calculations are quite
different: we calculate them as has been generally defined in Equation 2.11,
whereas Lacevic et al. have hardcoded the radius calculations for each robot
as special functions. For each robot mentioned in their source code they have
written specialized functions to calculate the radii: one function is for 2D
robots and another is for the 6 degree-of-freedom xArm6 robotic manipulator.
In addition, they add arbitrary constants to the encompassing radii, which
they have defined in an additional .yaml file for each robot.

Scenarios

Another difference may stem from the type of scenario that the planners were
tested on. Lacevic et al. test their RBT on scenarios where the start and
goal configurations are in relatively free space away from obstacles as can be
seen in Figure 4.9. The more free space there is around the manipulator the
faster RBT runs, therefore in our scenarios, where we attempt to grasp in or
pass through constrained spaces, RBT will run all the more slowly.

44

................................. 4.4. Testing on scenarios

Profiling J+RRT and J+RBT

Let us investigate the implementation speeds. We have run both planners
with the GNU profiler compiler option [30]. From that data we have mapped
out how long each function takes to execute into Table 4.4 for J+RRT and
Table 4.5 for J+RBT. We omit any functions that take up less than 5% of
total runtime. Compiler optimizations were turned off.

The function that we can most easily compare between the two algorithms
is the SetClosestConfig function which, whenever a new configuration qnew is
added to the tree, for every target grasp pose g ∈ G, it updates whether qnew
is the closest configuration according to distance metric from Equation 4.1.
Since the number of calls of SetClosestConfig is directly proportional to the
number of nodes in the tree, and we know how many nodes per second each
of the algorithms adds, then we can calculate the ratios of runtimes of the
other functions of the two algorithms.

An indicator of a bad implementation of J+RBT would mean that the
rate of node generation of J+RBT RJ+RBT would be comparable or smaller
compared to RJ+RRT for J+RRT. SetClosestConfig takes up a constant
amount of absolute time per node for both planners, therefore a larger
relative node generation rate Ralg is better. To ease calculation we define
NJ+RRT as the number of nodes generated per second by J+RRT and likewise
for NJ+RBT for J+RBT; the values are given in Table 4.3. We also define
SJ+RRT as the percentage of total runtime of the function SetClosestConfig
within J+RRT and SJ+RBT for J+RBT; these are given in Tables 4.4 and 4.5.
To fairly compare the node generation rates of the two planners we have to
normalize out the time spent on SetClosestConfigs, i.e., normalize the number
of nodes generated per second by the relative time spent generating them
1− Salg. The relative node generation rate is thus

Ralg = Nalg

1− Salg

[nodes
second · relative node generation time

]
. (4.2)

For J+RRT: RJ+RRT = 5200
0.85 ≈ 6100; for J+RBT: RJ+RBT = 7600

0.78 ≈ 9700.
This result suggests that J+RBT creates many more equivalent nodes per
second, which rules out more severe errors in implementation. The above
equation states that every second, J+RRT spends 0.85 seconds generating
nodes and 0.15 seconds checking which nodes are closest to the goal; conversely,
J+RBT spends 0.78 seconds generating nodes and 0.22 seconds checking
which nodes are closest to the goal while producing significantly more nodes
in those 0.78 seconds.

The fact that J+RBT generates more nodes per second and on average
spends less time on generating each node suggests that the concept of a bur is
inefficient when implemented for the general case. Furthermore, constrained
spaces significantly limit the volume of the complete collision-free bubble
CB, shrinking the available configuration space that can be explored by a
single bur. During planning, J+RBT experiences plateaus more often than
J+RRT, which suggests that there are cases where it is up to chance whether
J+RBT finishes quickly or not. An illustration of such a case is depicted in

45

4. Results

Goal

Start

(a) : RBT tree growth.

Goal

Start

(b) : RRT tree growth.

Figure 4.10: Comparison of the growth of RBT and RRT trees in the same
amount of time.

Figure 4.10. As we can see, RBT generates many more nodes but often right
next to obstacles, causing subsequent burs to be exceedingly small in size.
Even with a 25% speed up in planning time thanks to adaptive burs [21] it
would not be enough to catch up to J+RRT.

Function Percentage of runtime [%]
IsColliding 40

NearestNeighbour 24
SetClosestConfig 15
ExtendToGoal 12

Table 4.4: J+RRT profiling result

Function Percentage of runtime [%]
ClosestDistance 25

Bur 22
SetClosestConfig 22
NearestNeighbour 9

IsColliding 7
AddNode 6

Table 4.5: J+RBT profiling result

As mentioned in the preceding sections, Lacevic et al. save computation
time by partially skipping the ClosestDistance computation for a few segments
of one type of robot and some objects in the environment. Then they also
simplified the bur calculation by computing the special cases of the projected
encompassing radii for each robot they tested, not the general case as we have
done. As it happens, their simplifications target precisely the two procedures
that take up the most amount of time in RBT.

46

................................. 4.4. Testing on scenarios

Special cases

The 2D manipulators such as the one in Figure 4.9 that Lacevic et al. have
provided are represented as box primitives as opposed to meshes. The FCL
library has specialized functions to speed up collision and distance queries for
primitives, so having the robot represented as primitives might help speed up
the operations. Not only that, all obstacles are also represented as convex
box primitives which probably speeds up distance queries even further. The
xArm6 robot, on the other hand, is represented as simple collision meshes. In
the current library of their planners, Lacevic et al. have written specialized
functions to approximate the robot and obstacles using shape primitives such
as capsules, spheres and boxes. Such approximations can reduce the runtime
of their algorithms even further by diminishing the runtime of ClosestDistance
relative to other procedures.

47

48

Chapter 5
Conclusion

In this work we have been introduced to IK-RRT [16], J+RRT [16] and
RBT [3] which has high exploratory capabilities in large patches of free space.
We have derived a more general way to calculate burs for mobile robotic
manipulators, making them applicable for a wide range of robot types. We
then performed a statistical analysis of the planners on various grasping
tasks in both easy and challenging scenarios created using Jogramop [24] and
investigated why some planners work well where others fail.

We have found out that RBT generates more nodes per second than RRT,
and yet its planning times are longer. This result suggests that the concept
of a bur is inefficient when implemented for the general case. Moreover,
constrained spaces such as the scenarios that we have tested the planners
on significantly limit the volume the complete collision-free bubble CB can
occupy. This limits the available configuration space that can be explored by
a single bur. Lacevic et al. managed to adapt RBT such that it outperforms
RRT in certain scenarios. As we have previously mentioned, their scenarios
have fewer constrained spaces, and they reduce computation time by using
solely convex obstacles comprising geometric primitives such as cubes and
capsules. Finally, they simplified the bur calculation by computing special
cases of the projected radii for each robot they tested, whereas we have
derived bur calculation to work in the general case.

We have found that IK-RRT is the best planner overall. It alternates
between finding collision-free inverse kinematics solutions to the target grasp
poses and planning using bi-directional RRT. The speed of calculating inverse
kinematics combined with the efficiency of bi-directional search seems to beat
J+RRT and J+RBT in almost any scenario.

5.1 Future work

There are situations in which only one segment of the robot is in a restricted
area. In that case, theoretically, the rest of the robot should be able to move
freely while the one segment stays still. In Section 3.2 we mentioned the
case where we can move later segments when lower segments are “stuck”
between obstacles. We also mentioned the converse case where we would
earlier segments should be movable when the later segments of the robot are

49

5. Conclusion......................................
restricted. This problem is partially addressed by expanding the definition of
the complete bubble of free space CB from Equation 2.8. The same derivations
that we have performed during the course of this work can be performed
analogically using the distance profile dc, i.e., the distance to the closest
obstacle for every segment. This set of collision-free points can be called the
expanded bubble of free space EB:

EB(q, dc) =

x ∈ Cfree

∣∣∣∣∣∣∣

∥∥fp1(q)− fp1(y)

∥∥ < dc,1
...∥∥fpn

(q)− fpn
(y)
∥∥ < dc,n

 , ∀y ∈ qx

 , (5.1)

where n is the number of segments, pi is the position of segment i, dc is the
vector of distances to the closest obstacles for each segment and fpi

(q) is the
forward kinematics of segment i.. The function φ(t) from Equation 2.10 is
then performed on a segment by segment basis and only the smallest result
is used:

φ(t) = min
i=1...n

(
dc,i −

∥∥fpi
(q)− fpi

(y)
∥∥) , (5.2)

Future work that combines the two approaches of extended burs, Algorithm 9,
and expanded bubbles of free space, Equation 5.1, seem promising candidates
for mitigating the effects constrained spaces have on the size of burs. In
addition, recent work on optimal multi-trajectory motion planning using burs
by Covic et al. [31] exploits the properties of burs even further. An illustration
of what a multi-tree bur approach can achieve is depicted in Figure 5.1b.
In Figure 5.1a we can see that when creating a single bur tree there is a
lot of overlap between burs, and in extreme cases the coverage of the next
bur can be over half of or even more than the area of the previous bur. A
multi-tree approach would result in something more akin to Figure 5.1b. It
minimizes overlap among burs by creating multiple trees starting in different
collision-free configurations, thus leading to even greater utilization of the
inherent advantages of burs of creating large patches of collision-free space.
Or, analogically, one could grow a single tree by alternating between burs
and RRT extend procedures to minimize overlap between neighbouring burs,
which could also result in a structure such as the one in Figure 5.1b.

50

..................................... 5.1. Future work

(a) : Regular bur tree. (b) : Alternative bur tree.

Figure 5.1: Comparison of bur trees.

51

52

Bibliography

[1] Chair of Production Systems, University of Leoben, “Robot
Franka Emika Panda.” https://cps.unileoben.ac.at/
robot-franka-emika-panda/franka_panda_203/, 2023. Accessed:
2024-04-17.

[2] Generation Robots, “List of criteria to look at before buy-
ing a robot arm.” https://www.generationrobots.com/blog/en/
list-of-criteria-to-look-at-before-buying-a-robot-arm/, Oc-
tober 2019. Image: Panda Franka Emika care robot arm.

[3] B. Lacevic, D. Osmankovic, and A. Ademovic, “Burs of free c-space: A
novel structure for path planning,” in 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 70–76, 2016.

[4] ClipartMag, “Moving Day Clipart.” https://clipartmag.com/
moving-day-clipart, [Date]. Accessed: 2024-04-17.

[5] The Independent, “Friends 20th anniversary: Best moments from the
show as chosen by you,” The Independent, September 2014. Accessed:
2024-04-17.

[6] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in 20th Annual Symposium on Foundations of Computer Science (sfcs
1979), pp. 421–427, 1979.

[7] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching
in static environments for humanoid robots,” in 2006 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 846–851,
2006.

[8] M. Rudorfer, M. Suchi, M. Sridharan, M. Vincze, and A. Leonardis,
“Burg-toolkit: Robot grasping experiments in simulation and the real
world,” 2022.

[9] E. Coumans and Y. Bai, “Pybullet, a python module for physics simula-
tion for games, robotics and machine learning.” http://pybullet.org,
2016–2021.

53

https://cps.unileoben.ac.at/robot-franka-emika-panda/franka_panda_203/
https://cps.unileoben.ac.at/robot-franka-emika-panda/franka_panda_203/
https://www.generationrobots.com/blog/en/list-of-criteria-to-look-at-before-buying-a-robot-arm/
https://www.generationrobots.com/blog/en/list-of-criteria-to-look-at-before-buying-a-robot-arm/
https://clipartmag.com/moving-day-clipart
https://clipartmag.com/moving-day-clipart
http://pybullet.org

5. Conclusion......................................
[10] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,

“Benchmarking in manipulation research: Using the yale-cmu-berkeley
object and model set,” IEEE Robotics and Automation Magazine, vol. 22,
no. 3, pp. 36–52, 2015.

[11] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[12] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–1001 vol.2,
2000.

[13] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the rrt*,” in 2011 IEEE International Conference
on Robotics and Automation, pp. 1478–1483, 2011.

[14] M. Kalisiak and M. van de Panne, “Rrt-blossom: Rrt with a local flood-
fill behavior,” in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pp. 1237–1242, 2006.

[15] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[16] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann,
“Humanoid motion planning for dual-arm manipulation and re-grasping
tasks,” in 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, (St. Louis, MO), pp. 2464–2470, IEEE, Oct. 2009.

[17] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions using
a task-space voronoi bias,” in 2009 IEEE International Conference on
Robotics and Automation, pp. 2061–2067, 2009.

[18] S. Quinlan, Real-time modification of collision-free paths. Stanford
University, 1995.

[19] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-
tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142–153, 2017.

[20] B. Lacevic and D. Osmankovic, “Path Planning for Rigid Bodies Using
Burs of Free C-Space,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 280–285,
2018.

[21] B. Lacevic, D. Osmankovic, and A. Ademovic, “Path planning using
adaptive burs of free configuration space,” in 2017 XXVI International
Conference on Information, Communication and Automation Technolo-
gies (ICAT), (Sarajevo), pp. 1–6, IEEE, Oct. 2017.

54

..................................... 5.1. Future work

[22] B. Lacevic and D. Osmankovic, “Improved C-Space Exploration and
Path Planning for Robotic Manipulators Using Distance Information,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), (Paris, France), pp. 1176–1182, IEEE, May 2020.

[23] M. Vande Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
2007 7th IEEE-RAS International Conference on Humanoid Robots,
(Pittsburgh, PA, USA), pp. 477–482, IEEE, Nov. 2007.

[24] M. Rudorfer, J. Hartvich, and V. Vonásek, “A framework for joint grasp
and motion planning in confined spaces,” in Robot Motion and Control
(RoMoCo), 2024 12th International Workshop on, July 2024. Accepted
in April 2024.

[25] Orocos KDL, “The kinematics and dynamics library,” 2024. Accessed:
2024-03-18.

[26] University of North Carolina at Chapel Hill, “Proximity Query Package
(PQP).” http://gamma.cs.unc.edu/SSV/, 1999. Accessed: 2024-04-21.

[27] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Applications, 2009.

[28] MathWorks, “Plan motion for rigid body tree using bidirectional rrt.”
https://www.mathworks.com/help/robotics/ref/manipulatorrrt.
html, 2024. Accessed: 2024-05-08.

[29] robotics ETF, “Rapid prototyping motion planning library v2 (rpmplv2).”
https://github.com/robotics-ETF/RPMPLv2, 2024. Accessed: 2024-
05-18.

[30] GNU Project, GNU gprof: The GNU Profiler. Free Software Foundation,
2024. Accessed: 2024-05-18.

[31] N. Covic, D. Osmankovic, and B. Lacevic, “Asymptotically Optimal
Path Planning for Robotic Manipulators: Multi-Directional, Multi-Tree
Approach,” Journal of Intelligent & Robotic Systems, vol. 109, p. 14,
Sept. 2023.

55

http://gamma.cs.unc.edu/SSV/
https://www.mathworks.com/help/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/robotics/ref/manipulatorrrt.html
https://github.com/robotics-ETF/RPMPLv2

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483636 Personal ID number: Hartvich Jiří Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Sampling-Based Motion Planning Using Burs of Free-Space

Master’s thesis title in Czech:

Rychlé plánování pohybu manipulátorů

Guidelines:

1. Get familiar with the motion planning problem and sampling-based planning techniques like Rapidly-exploring Random
Tree and its variants [1]. Study problem of path planning for robotic manipulators [6].
2. Implement a variant of RRT for mobile manipulators using inverse kinematics, e.g., RRT-IK [4], and adapt it to mobile
manipulator robots. Use the BURG toolkit as a model/simulation of the mobile manipulator and the environment [5].
3. Implement Burs-RRT [2,3] and adapt it for mobile manipulator robots.
4. Extend a selected planner from tasks 2) or 3) for grasping in constrained environments. An external library gives grasping
positions. The task is to move the robot as close as possible to the grasping position. Multiple grasping positions are
available for each object. Assume that final positions are given only in the task space (i.e., without inverse kinematics).
Grasping is not part of this task and does not need to be solved.
5. Compare methods from tasks 2) and 3) in a set of scenarios for grasping in constrained environments. Consider „easy“
scenarios (robot motion is not blocked by obstacles), as well as „challenging “ scenarios (robot or object to be grasped is
behind an obstacle). Statistically evaluate the performance of the planners.

Bibliography / sources:

[1] S. M. LaValle, Planning algorithms, 2006, Cambridge press.
[2] Lacevic, Bakir, and Dinko Osmankovic. “Path Planning for Rigid Bodies Using Burs of Free C-Space.” IFAC-PapersOnLine
51, no. 22 (2018): 280–85. https://doi.org/10.1016/j.ifacol.2018.11.555.
[3] Lacevic, Bakir, Dinko Osmankovic, and Adnan Ademovic. “Burs of Free C-Space: A Novel Structure for Path Planning.”
In 2016 IEEE International Conference on Robotics and Automation (ICRA), 70–76. Stockholm, Sweden: IEEE, 2016.
https://doi.org/10.1109/ICRA.2016.7487117.
[4] Vahrenkamp, Nikolaus, Dmitry Berenson, Tamim Asfour, James Kuffner, and Rudiger Dillmann. “Humanoid Motion
Planning for Dual-Arm Manipulation and Re-Grasping Tasks.” In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2464–70. St. Louis, MO: IEEE, 2009. https://doi.org/10.1109/IROS.2009.5354625.
[5] Martin Rudorfer, Markus Suchi, Mohan Sridharan, Markus Vincze, Aleš Leonardis, BURG-Toolkit: Robot Grasping
Experiments in Simulation and the Real World.
[6] Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control", Cambridge University Press,
2017, ISBN 9781107156302.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 23.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

	Introduction
	Related work
	Motion planning definition
	RRT (Rapidly-exploring Random Trees)
	PRM (Probabilistic RoadMaps)

	IK-RRT
	J+RRT
	Workspace RRT
	RRT advantages and disadvantages

	Burs
	Assumptions
	RBT for manipulators
	RBT for rigid bodies
	RBT extensions

	BURG–Toolkit
	Summary

	Methods
	Calculating Burs
	Revolute joints
	Prismatic joints
	Revolute and Prismatic Bur
	Added bonus for workspace goals
	Including geometry for mobile robotic manipulators

	Extended RBT

	Results
	RBT implementation
	Hyperparameters
	Bur endpoint calculation
	Planning time

	Testing on scenarios
	Tree growth
	Implementation

	Conclusion
	Future work

	Bibliography

